发布于 

了解encoder-decoder使用代码例子

背景:看过语言模型Transformer框架介绍,有encoder-decoder代码,想了解使用场景

encoder-decoder使用代码例子

ChatGPT

以下是一个简单的编码器-解码器(encoder-decoder)模型的代码示例,用于将一个序列中的数字进行编码和解码。

import numpy as np
from keras.layers import Input, LSTM, Dense
from keras.models import Model

# 定义输入序列长度和输出序列长度
input_len = 10
output_len = 5

# 定义输入和输出的维度
input_dim = 1
output_dim = 1

# 定义LSTM单元的数量
num_units = 32

# 定义输入层
inputs = Input(shape=(input_len, input_dim))

# 定义编码器
encoder = LSTM(num_units, return_state=True)
encoder_outputs, state_h, state_c = encoder(inputs)

# 保留编码器的状态作为解码器的初始状态
encoder_states = [state_h, state_c]

# 定义解码器
decoder_inputs = Input(shape=(output_len, output_dim))
decoder_lstm = LSTM(num_units, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = Dense(output_dim, activation='linear')
decoder_outputs = decoder_dense(decoder_outputs)

# 定义模型
model = Model([inputs, decoder_inputs], decoder_outputs)

# 编译模型
model.compile(optimizer='adam', loss='mse')

# 定义训练数据
X_train = np.random.rand(100, input_len, input_dim)
Y_train = np.random.rand(100, output_len, output_dim)

# 训练模型
model.fit([X_train, Y_train], Y_train, epochs=100, batch_size=10)

# 使用模型进行预测
X_test = np.random.rand(1, input_len, input_dim)
decoder_input_test = np.zeros((1, output_len, output_dim))
decoder_input_test[0, 0, 0] = 1
predictions = model.predict([X_test, decoder_input_test])

# 打印预测结果
print(predictions)

在这个例子中,我们使用Keras库中的LSTM层来定义编码器和解码器。在训练期间,我们将输入和输出作为模型的输入,并使用“mse”作为损失函数来训练模型。在预测期间,我们使用训练好的模型来预测一个新的序列。

Transformer Encoder代码例子

ChatGPT

以下是一个简单的Transformer Encoder的代码示例,用于将一个序列中的单词进行编码:

import tensorflow as tf
from tensorflow.keras import layers

class MultiHeadSelfAttention(layers.Layer):
def __init__(self, embed_dim, num_heads=8):
super(MultiHeadSelfAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
if embed_dim % num_heads != 0:
raise ValueError(
f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}"
)
self.projection_dim = embed_dim // num_heads
self.query_dense = layers.Dense(embed_dim)
self.key_dense = layers.Dense(embed_dim)
self.value_dense = layers.Dense(embed_dim)
self.combine_heads = layers.Dense(embed_dim)

def attention(self, query, key, value):
score = tf.matmul(query, key, transpose_b=True)
dim_key = tf.cast(tf.shape(key)[-1], tf.float32)
scaled_score = score / tf.math.sqrt(dim_key)
weights = tf.nn.softmax(scaled_score, axis=-1)
output = tf.matmul(weights, value)
return output, weights

def separate_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim))
return tf.transpose(x, perm=[0, 2, 1, 3])

def call(self, inputs):
batch_size = tf.shape(inputs)[0]
query = self.query_dense(inputs)
key = self.key_dense(inputs)
value = self.value_dense(inputs)
query = self.separate_heads(query, batch_size)
key = self.separate_heads(key, batch_size)
value = self.separate_heads(value, batch_size)
attention, weights = self.attention(query, key, value)
attention = tf.transpose(attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(attention, (batch_size, -1, self.embed_dim))
output = self.combine_heads(concat_attention)
return output

class TransformerBlock(layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
super(TransformerBlock, self).__init__()
self.att = MultiHeadSelfAttention(embed_dim, num_heads)
self.ffn = tf.keras.Sequential(
[layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),]
)
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)

def call(self, inputs, training):
attn_output = self.att(inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(out1 + ffn_output)

class TokenAndPositionEmbedding(layers.Layer):
def __init__(self, maxlen, vocab_size, embed_dim):
super(TokenAndPositionEmbedding, self).__init__()
self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)
self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)

def call(self, x):
maxlen = tf.shape(x)[-1]
positions = tf.range(start=0, limit=maxlen, delta=1)
positions = self.pos_emb(positions)
x = self.token_emb(x)
return x + positions

embed_dim = 32 # Embedding size for each token
num_heads = 2 # Number of attention heads
ff_dim = 32 # Hidden layer size in feed forward network inside transformer

inputs = layers.Input(shape=(maxlen,))
embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)
x = embedding_layer(inputs)
transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)
x = transformer_block(x)
x = layers.GlobalAveragePooling1D()(x)
x = layers.Dropout(0.1)(x)
x = layers.Dense(20, activation="relu")(x)
x = layers.Dropout(0.1)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)

model = tf.keras.Model(inputs=inputs, outputs=outputs)

在这个例子中,我们使用Keras库来定义了一个Transformer Encoder模型。TransformerEncoder由多个TransformerBlock组成,每个TransformerBlock由一个MultiHeadSelfAttention层和一个前馈网络层组成。在输入层之后,我们使用了一个TokenAndPositionEmbedding层来嵌入每个单词。最后,我们使用全局平均池化层和一个密集层来输出最终结果。